Dyadic diaphony of digital sequences
نویسندگان
چکیده
L’accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
منابع مشابه
Dyadic diaphony of digital sequences par
The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital (0, s)-sequences over Z2, s = 1, 2. These formulae show that for fixed s ∈ {1, 2}, the dyadic diaphony has the same values for any digital (0, s)-sequence. For s = 1, it follows that the dyadic diaphony and the diaph...
متن کاملDyadic Diaphony
1. Introduction. Diaphony (see Zinterhof [13] and Kuipers and Nieder-reiter [6, Exercise 5.27, p. 162]) is a numerical quantity that measures the irregularity of the distribution of sequences in the s-dimensional unit cube [0, 1[
متن کاملThe b-adic diaphony of digital (0, 1)-sequences: A central limit theorem and a relation to the classical diaphony
The b-adic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit interval. In this paper we show that the b-adic diaphony of digital (0, 1)-sequences satisfies a central limit theorem. Further we show a relation between the functions χ δj b and ψb, which appear in the formulas for the classical diaphony and the b-adic diaphony of digital (0, 1)-NUT-se...
متن کاملOn the diaphony and the star-diaphony of the Roth sequences and the Zaremba sequences
In this paper, we estimate the star-diaphony and the diaphony of the Roth sequence and the Zaremba sequence using their L 2-discrepancy formula given by Halton and Zaremba (see 3]), and White (see 17]). The optimal estimates and the exact asymptotic behaviours of the star-diaphony and the diaphony of both sequences are given. Moreover, the exact asymptotic behaviours of the star-diaphony are th...
متن کاملThe b-adic Diaphony as a Tool to Study Pseudo-randomness of Nets
We consider the b-adic diaphony as a tool to measure the uniform distribution of sequences, as well as to investigate pseudo-random properties of sequences. The study of pseudo-random properties of uniformly distributed nets is extremely important for quasi-Monte Carlo integration. It is known that the error of the quasi-Monte Carlo integration depends on the distribution of the points of the n...
متن کامل